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1.0 INTRODUCTION

Terrain roughness has a direct impact on ground vehicle performance. Movement over terrain causes
excitation of the vehicle, through its suspension system, based on forward speed. lIts effects can require
reductions in speed due to vibration imparted to the occupants or concern about structural integrity.
Performance requirements that incorporate terrain roughness, as a parameter, ensure vehicle operation
at expected levels since the vehicle will be designed to handle excitations for that environment.
Accomplishment of this requires a metric that measures terrain roughness which allows vehicle system
designers and testers the ability to use it to correlate roughness levels with associated predicted and
verified performance. As can be seen from references [1] to [11] this has been a field of interest for some
time.

The scope here is limited to the metric of root-mean-square (RMS) as a measure of terrain roughness---
recognizing its limitations (assumes no “favored or predominate frequencies”) and accepting its historical
significance to this point as the Army’s measure of terrain roughness.

2.0 SPACIAL DOMAIN

The description and examples of the metric are given using MATLAB [13] as the computational platform.

2.1 Root-Mean-Square (RMS) Terrain Roughness Metric

The statistical measure of standard deviation (equivalent to the square root of the variance) “shows how
much variation or dispersion from the average exists” (http://en.wikipedia.org/wiki/Standard_deviation).
Another term for this is root-mean-square (RMS) when the mathematical operations used to calculate it
are considered. The assumption that an average exists leads to the requirement that the metric must be
used on stationary data to make sense. As Figure 1 shows, the RMS roughness metric for a non-
stationary (non-detrended) terrain would result in a much larger value than for its stationary (detrended)
counterpart and not provide the intended correlation between vehicle performance---the RMS “OF” the
trend is much larger than the RMS of the profile “FROM” the trend.
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Figure 1 — Stationary Data Example (see [12])

This highlights the importance of detrending before calculating terrain roughness. Leaving the issue of
which detrending method is best, further details of detrending with a double-sided exponential filter will be
discussed in the formal definition of the RMS roughness metric.

Energy conservation indicates that there is a relationship between the spacial and frequency
representation of a signal (see Parseval's theorem). The RMS roughness metric of a terrain profile



(spacial domain) is an equivalent measure of the area under the Power Spectral Density (PSD) of the
same profile (frequency domain). From [12] the terrain PSD can be defined as

PSD4(1) = CA™N
(1)

where "N is approximately 2 for both natural and man-made surfaces. Man-made surfaces can be
artificially constructed to give any value of N”. With the definition in equation (2)

A_U
o f
)

A wavelength (distance/cycle)

v velocity (distance/time)

f frequency (cycle/time)

the dependence of the excitation of the vehicle on forward velocity is shown in equation (3).

PSD4(f) = vCf~2 .

From the above discussion, the formal definition of the RMS terrain roughness metric is given in Figure 2.

évzo Fu% (x;)

RMS =
N

Fa(x;) = F(x;) — F(x;)

%zo[F(xn + na) + F(x, — na)]e_(%)

PG - i
_ ryr oD

n=0

F(x) | elevation at point x

Fq(x) | detrended elevation point

F(x) | trend elevation point

n step number

a measurement interval

A weight constant




M limit of summation

Figure 2 — RMS Terrain Roughness Metric Definition (see [12])

Application of the metric to a data sequence is simple. Making the data stationary (detrending) to obtain
meaningful results is the difficulty---

The complexity arises when the principles are reduced to practice, for then the realities of
implementing logic, storing information, and transferring data have to be addressed.
---Robert F. Stengel, Optimal Control and Estimation (ISBN 0-486-68200-5)

2.2 Double-sided Exponential Filter

Based on work done in [12], a double-sided exponential filter has historically been used to detrend terrain
elevation profile data before determining its RMS value---the necessity of which has been discussed
above. In electrical engineering terms this is equivalent to high-pass filtering with the difference that for
digital data double-sided averaging (both past and future) can be performed to remove phase shift that
may result from one-sided filtering.

From Figure 2 values for the limit of summation, measurement interval, and weight constant must be
determined to apply the detrending filter as shown in Figure 3.

Flx-4a) F(x-2qa) F(x) F(x+2a) Flxt+4a)

] /

Figure A-2 EXPONENTIAL DETRENDING OF DATA POINTS
Figure 3 — Double-sided Exponential Filter (see [12])

2.2.1 Measurement Interval
Conclusions based on analysis in [12] indicate that the smallest wavelength that affects vehicles from

natural terrains is about 2 feet. With consideration for the Nyquist-Shannon sampling theorem a
maximum of 1 foot intervals can be chosen.

2.2.2 Limit of Summation

Historically, sixty feet (60 feet) has been considered the longest wavelength that affects vehicle
responses. Equation (4) provides an example assuming the lowest sprung mass natural frequency is
0.75 Hz with a speed of 30 MPH (44 feet/sec).



v 44
Atotal = T = 0.75 = 58.6 = 60 feet

(4)

This is the complete length of the double-sided exponential filter---halving the value for one-side (30 feet).

2.2.3 Weight Constant

As shown in equation (5) the practical numerical limit of the exponential filter’s extent is considered met
when the exponent reaches -3. Including terms with larger exponents will contribute little since their
weighting coefficients will be quite small.

-(%)
e \A/) =e 3 =0.0497

(5)
Table 1 summaries the filter parameters for several cases.

Table 1 — Exponential Filter Parameters

exp length (1 side) 30 ft 360 in 360 in
a 11t 3in 6in
M (= leng th) 30 120 60
a
/1(=?) 10 ft 120 in 120 in

The extent is 31 with A being fixed for a given exponential length (1-side)---although the units may change
(e.g. feet to inches).

2.3 Example Usage — RMS Terrain Roughness Metric Function

The RMS definition in Figure 2 is implemented in Appendix A.1 using MATLAB [13]. The function “rms” is
used on digital elevation versus displacement samples in the spacial domain. The assumption for
displacement is equally spaced data samples.

Example — calling rms function

y hold digital elevation versus displacement data

y(:,2)*12; % convert feet to inches or consistent units for other input values
- (N*A/lambda)

[0:1:120]'; % 1l-side = 30 ft = 360 in @ 3 in samples = 120 (360/3)

3; % 3 in samples
ambda = 10*12; % 10 ft * 12 = 120 in

-N*A/lambda = -120*3/120 = -3 @ last sample
fdet, rms, fmean, xmean]=rms (x,N, A, lambda); % units are inches

o
I o

— o0 = ¥ 2 do X

The output of this function will be used to compare to frequency domain calculations.

3.0 FREQUENCY DOMAIN MATHEMATICS

Historically the RMS Terrain Roughness Metric has been calculated in the spacial domain. Digital Signal
Processing (DSP) generally views filters from a frequency domain perspective. Addressing the frequency
domain calculation of the metric in Section 2.1 and the filter defined in Section 2.2 should result in wider
application and understanding.



The link between the spacial and frequency domains starts with the principle of duality between the two—
multiplication in the time domain is convolution in the frequency domain, and vice versa. Other
relationships between the two domains will briefly be discussed (Parseval's Theorem, etc.).

3.1 Correlation
Correlation is the first step in understanding convolution. An excellent reference is [15] from which the
following definition is obtained and the first four pages are included in Appendix A.3.

Fol(x)= iF(i)I(erf)

i—N

Here F is considered of odd length. Consider it a sliding window operation---overlapping the sequences
and then multiplying and adding. Additional coefficients may be involved---to perform functions such as
averaging, etc. When F does not completely overlap | operations are undefined for values outside of the
boundaries of I. Several options are available.

e pad with zeros (MATLAB default)
e pad with 1st/last values
e cyclically repeated

Computation can continue when undefined values are resolved with one of these methods.

3.2 Convolution
Convolution is the dual operation to multiplication in the spacial and frequency domains. It is the same as
correlation, except that the filter is flipped first [15] (e.g. F=(2,8,9) -> (9,8,2)) and defined as

F*I(x)= iF(f}I(n‘ —7)

i—N
Another useful reference on convolution is [16].

3.3 Parseval’s Theorem
One of the other relationships between the spacial and frequency domain is Parseval’'s Theorem [17]. It
is defined as

=1 i =1

3 laln] = 57 5 1004

which shows the equivalence between energy in the signal regardless of the domain. It is used to check
computational results to ensure the principle is preserved.

3.4 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is a mathematical tool [18] used to change data representations
between the spacial and frequency domains. A variant that allows faster compute times is called the Fast
Fourier Transform (FFT) but performs the equivalent function. The inverse DFT of convolution results in
the frequency domain should match multiplication results in the spacial domain. This method will be used
to verify frequency domain calculations.

3.4.1 Scaling

From [18] the following is informative regarding the scale factor applied to the DFT:



The normalization factor multiplying the DFT and IDFT (here 1 and 1/N) and the signs of
the exponents are merely conventions, and differ in some treatments. The only
requirements of these conventions are that the DFT and IDFT have opposite-sign
exponents and that the product of their normalization factors be 1/N. A normalization of

¥ I'i‘!‘-'z'i"rfor both the DFT and IDFT, for instance, makes the transforms unitary.

Note that MATLAB uses the opposite scaling mentioned in the first sentence. From [19] elaboration on
scaling is given:

Question 3.7. FFTW gives results different from my old FFT.

People follow many different conventions for the DFT, and you should be sure to know
the ones that we use (described in the FFTW manual). In particular, you should be aware
that the FFTW_FORWARD/FFTW_BACKWARD directions correspond to signs of -1/+1
in the exponent of the DFT definition. (Numerical Recipes uses the opposite convention.).
You should also know that we compute an unnormalized transform. In contrast, Matlab is
an example of program that computes a normalized transform. See Q3.10 "Why does
your inverse transform return a scaled result?".

Finally, note that floating-point arithmetic is not exact, so different FFT algorithms will give
slightly different results (on the order of the numerical accuracy; typically a fractional
difference of 1e-15 or so in double precision).

Question 3.10. Why does your inverse transform return a scaled result?

Computing the forward transform followed by the backward transform (or vice versa)
yields the original array scaled by the size of the array. (For multi-dimensional transforms,
the size of the array is the product of the dimensions.) We could, instead, have chosen a
normalization that would have returned the unscaled array. Or, to accommodate the
many conventions in this matter, the transform routines could have accepted a "scale
factor" parameter. We did not do this, however, for two reasons. First, we didn't want to
sacrifice performance in the common case where the scale factor is 1. Second, in real
applications the FFT is followed or preceded by some computation on the data, into
which the scale factor can typically be absorbed at little or no cost.

3.5 Fast Fourier Transform (FFT) Proper Scaling Test
Figure 4 shows the proper scaling of the FFT in MATLAB to match the input signal. From the three term
sinusoidal combination the frequency domain peak values match those defined in the time domain signal.

% MATLAB example
1

Fsl = 1000; $ F=1/T =1/le-3sec = 1l/msec
i 1000;
t= (0:1/Fs1:5000-1); % 5 sec @ Fs=1000

y = 0.3*sin(2*pi*35*t)+0.7 *sin(2*pi*50*t) + sin(2*pi*120*t);
tNFFT = 2”nextpow2 (L) ;

tY fft (y, tNFET) /tNFEFT;

tf Fsl/2*linspace (0,1, tNFFT/2+1) ; % one sided frequency

subplot(2,1,1),plot (1000*t(1:250),y(1:250))
subplot(2,1,2),plot (tf,2*abs (tY (1:tNFFT/2+1)))
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Figure 4 — FFT Example with Proper Scaling

4.0 FREQUENCY DOMAIN

Application of Section 2.0 using Section 3.0 will be demonstrated in Section 4.0.

4.1 Root-Mean-Square (RMS) Terrain Roughness Metric

The calculation of the RMS terrain roughness metric in the frequency domain is based on the duality of
convolution (multiplication in the spacial domain). The approach here is to provide equivalent frequency
domain operations and examples that show the same results as in the spacial domain with a plot of
results and description of the MATLAB script used to generate it. It should be noted that index values in
MATLAB are one (1) based and not zero (0) based.

4.2 Munson Gravel
The following examples apply to the profile known as Munson Gravel.

4.2.1 Spacial Domain

As described in Section 2.3 the time domain is the starting point. Figure 5 is based on time domain
operations (see Appendix A.1). Notice that the mean and detrended profile lose one half the length of the
filter at the beginning and end.



y=dlmread ('MUNGL.FIL"') ; % read in the data

x = y(:,2)*12; % convert feet to inches or consistent units

tmp = size(x);

lenx = tmp(1l); % get the length (# of points)

% e- (N*A/lambda)

N = [0:1:120]"; % l-side = 30 ft = 360 in @ 3 in samples = 120 (360/3)
A = 3; % 3 in samples

lambda = 10*12; %$ 10 ft * 12 = 120 in

$ -N*A/lambda = -120%*3/120 = -3 @ last sample

[

fdet, rms, fmean, xmean]=rmswes (x,N, A, lambda) ;

ttl = (0:lenx-1)"'*(1/3):; % displacement, 3 in samples
plot(ttl,x,'r");

hold on

plot(ttl(121:end-120), fmean, 'g'"); % account for filter beg and end

plot(ttl (121:end-120), fdet, 'b'"); % account for filter beg and end
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Figure 5 — Spacial Domain RMS Terrain Roughness Metric Results
Figure 6 shows a zoomed view of Figure 5 for the terrain profile and trend based on the filter defined in

Section 2.2. Notice the missing samples in the trend if the original data is not extended by the length of
the filter to avoid loss of data.

plot(ttl,x,'r");

hold on
plot(ttl(121:end-120), fmean, 'g'");
axis([1.444e4,1.455e4,1732,1737])
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Figure 6 — Zoomed Terrain Profile and Trend

Figure 7 shows a zoomed view of the detrended terrain profile.

plot(ttl,x,'r");

hold on

plot (ttl(121:end-120), fmean, 'g');
axis([1.444e4,1.455e4,1732,1737])
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Figure 7 — Detrended Terrain Profile

4.2.2 Spacial Domain Filters

1.45

1.455

1.46

1.465

147

x10

4

Figure 8 shows normalized 2-sided exponential and rectangular filters. Notice the overlap at fexp(lenN).

% 2-sided exponential

tmp = size(N);

lenN = tmp (1) ;

fexp = zeros(lenN*2-1,1); % overlap at zero
fexp(l:1lenN) = exp(-N(length(N):-1:1)*A/lambda) ;
fexp (lenN:end) = exp (-N*A/lambda) ;

fexp = fexp/sum(fexp);

tmp = size (fexp);

lenfexp = tmp (1) ;

% rect
rect = ones(lenN*2-1,1);
rect = rect/sum(rect);

tmp = size(rect);
lenrect = tmp(1l);

subplot (2,1,1),plot (fexp, 'r'")
subplot (2,1,2),plot (rect, 'g'")

fexp (lenN) = 2; % double count zero position
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Figure 8 — Spacial Domain Filters

4.2.3 Frequency Domain Filters
Figure 9 shows the frequency domain version of the spacial domain filters.

200

250

In real frequency terms,

accounting for negative frequencies, only one half of the length (NFFT) is used with double the absolute

value of the magnitude.

% filters in frequency domain - FFT

o

% linspace (x1,x2,N) = N pts between x1 and x2
f = Fs/2*linspace (0,1,NFET/2+1) ;

o°

subplot(2,1,1),plot (f,2*abs (Ffexp (1:NFFT/2+1)),'r
subplot(2,1,2),plot (f,2*abs (Frect (1:NFFT/2+1)),"'g

NFFT = 2”nextpow2 (lenx) ; % !!luse all with this so can mul in freq domain
Ffexp = fft (fexp,NFFT)/NFFT; % !!!scale by len to get right mag (see sin test)
Frect = fft(rect,NFFT) /NFFET;

% Fs = 1/T

Fs=(1/3); % 4 samples in 12 in = 4/12 = 1/3

1l 2*abs /NFFT/2+1
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Figure 9 — Frequency Domain Filters

4.2.3.1 Spacial Domain vs. Frequency Domain Filter Differences
Based on proper scaling demonstrated in Section 3.5, differences in the spacial domain and inverse FFT

of the frequency domain defined filters are shown in Figure 10. Note they are the same except for round
off error.

% filter differences - FFT/inverse FFT
ffexp = NFFT*ifft (Ffexp,NFFT) ; $!!1! scale by length

frect NEFFT*ifft (Frect,NFFT) ;

subplot (2,1,1),plot (fexp-ffexp(l:lenfexp),'r"); % lenfexp = lenN*2-1
subplot (2,1,2),plot (rect-frect (l:lenrect), 'b'");
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Figure 10 — Spacial versus Frequency Domain Filter Differences

4.2.4 Frequency Domain Operations — FFT/iFFT

250

Figure 11 shows the error between the original terrain profile and the FFT/IFFT of it---indicating the
operation gives back the original with no error.

% FFT x

Fx = fft(x,NFFT)/NFFT;
tt6=(0:1lenx-1)*(1/3);

ft6 = Fs/2*linspace(0,1,NFFT/2+1) ;

% inverse FFT x
Fcx = Fx;
fFcx = NFFT*ifft (Fcx,NFFT) ;

plot (tt6,x,'r");
hold on

plot (tt6,fFcx(l:1lenx), 'g*'); % !!! NFFT -> true length

plot (tt6,x-fFcx(l:1lenx),'b");
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Figure 11 — Frequency Domain Operations - FFT/iFFT Comparison

Figure 12 zooms in on the end of the original and FFT/iIFFT terrain profile to show both are equivalent,
validating the representation of the terrain profile in the spacial or frequency domain.
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Figure 12 — Zoomed FFT/iFFT Comparison

4.2.5 Spacial vs. Frequency Domain Mean Comparison

Figure 13 shows the comparison of the terrain profile trend (or mean) where it was filtered in the spacial
and frequency domain showing the equivalence of multiplication in the spacial domain and convolution in

the frequency domain.

% inverse x, mean, mydet, detrended
Fcx = Fx.*H;
fFcx = NFFT*NFFT*ifft (Fcx,NFFT) ; % 1! scale by time length

plot (fmean, 'r'")
hold on

% !!! proper indexes for y cutoffs (y only when exp fully in orig vy)
plot (abs (fFcx (lenfexp:lenx+ (lenfexp-1) - (lenfexp-1))),'g*');
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Figure 13 — Spacial versus Frequency Domain Mean Comparison

A zoomed version is shown in Figure 14 for the end of the terrain profile.
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Figure 14 — Zoomed Mean Comparison

4.2.6 Spacial vs. Frequency Domain Detrended Comparison

Figure 15 shows the detrended terrain profile based on subtracting the trend obtained from the frequency
domain.

detrended

do -

% assumes lenexp is odd, take out mean from FFT/.*H/iFFT
mydet x( (lenfexp+l)/2 : lenx - (lenfexp+l)/2 + 1 ) - abs( fFcx( lenfexp : lenx + (lenfexp-
1) - (lenfexp-1) ) );

mm=mean (mydet)
mydet = mydet - mm;

plot (fdet, 'r');
hold on
plot ( mydet, 'g*'")
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Figure 15 — Spacial versus Frequency Domain Detrended Comparison

A zoomed version of the end is shown in Figure 16. Note the agreement in results.
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Figure 16 — Zoomed Detrended Comparison

4.2.7 Spacial vs. Frequency Domain Mean and Detrended Differences

Figure 17 shows the difference between the spacial and frequency domain for the mean

profile. Note they are the same except for round off error---about machine precision.

4.337

x10

and detrended

% mean error

o

% detrended error

% !!! proper indexes for y cutoffs
subplot (2,1,1),plot (fmean - abs (fFcx(lenfexp:lenx+ (lenfexp-1)-(lenfexp-1))),'r");

(y only when exp fully in orig y)

subplot (2,1,2),plot (fdet-mydet, 'r'") ;
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Figure 17 — Spacial versus Frequency Domain Mean/Detrended Differences

4.2.8 Equivalent Measures

Results output from the script below show numerical comparisons between the spacial domain RMS
function, standard deviation of the detrended signal, square root of the variance of the detrended signal,
and each side of Parseval’s Theorem outlined in Section 3.3 to be equivalent.

oo .

PSD
% std(x,1) = sqgrt(sum(x.”2)/length(x))
tmp = size (mydet);

lenmydet = tmp (1)

Fmydet = fft (mydet,NFFT)/NFFT;
Pxx = Fmydet.*conj (Fmydet) ;

'rm t10-d

diary t10-d

'spacial/freq results'

'rms'

'std(mydet, 1) "

'sgrt (var (mydet, 1))’

'sgrt ( sum(mydet.”2)/length (mydet)) '
'sqgrt ( sum( Pxx )*length (mydet) /NFET) '

[rms, std (mydet, 1), sqgrt (var (mydet,1)),sqgrt ( sum (mydet.”2) /length (mydet) ), sqrt ( sum ( Pxx
) *NFFT/length (mydet) ) ]
diary
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ans =

spacial/freq results

ans =

rms

ans =

std (mydet, 1)

ans =

sqgrt (var (mydet, 1))

ans =

sgrt ( sum(mydet.”2)/length (mydet))

ans =

sqrt ( sum( Pxx ) *length (mydet) /NFET)

ans =

0.3364 0.3364 0.3364 0.3364 0.3364

Computation of the Root-Mean-Square (RMS) Terrain Roughness Metric (Section 2.1) is valid in either

the spacial or frequency domain.

4.3 Perryman 3

The following examples apply to the profile known as Perryman 3. Differences from Section 4.2 are only

in the file read in and label names.

4.3.1 Spacial Domain
As described in Section 2.3 the time domain is the starting point.
operations.

Figure 18 is based on time domain
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Figure 18 — Spacial Domain RMS Terrain Roughness Metric Results
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Figure 19 shows a zoomed view of Figure 18 for the terrain profile and trend based on the filter defined in
Section 2.2. Notice the missing samples in the trend if the original data is not extended by the length of

the filter to avoid loss of data.
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Figure 19 — Zoomed Terrain Profile and Trend

Figure 20 shows a zoomed view of the detrended terrain profile.
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Figure 20 — Detrended Terrain Profile

4.3.2 Frequency Domain Operations - FFT/iFFT

Figure 21 shows the error between the original terrain profile and the FFT/iIFFT of it---indicating the
operation gives back the original with no error.
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Figure 21 — Frequency Domain Operations - FFT/iFFT Comparison

Figure 22 zooms in on the end of the original and FFT/iFFT terrain profile to show both are equivalent,
validating the representation of the terrain profile in the spacial or frequency domain.
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Figure 22 — Zoomed FFT/iFFT Comparison

4.3.3 Spacial vs. Frequency Domain Mean Comparison
Figure 23 shows the comparison of the terrain profile trend (or mean) where it was filtered in the spacial

and frequency domain showing the equivalence of multiplication in the spacial domain and convolution in
the frequency domain.
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Figure 23 — Spacial versus Frequency Domain Mean Comparison

is shown in Figure 24 for the end of the terrain profile.
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Figure 24 — Zoomed Mean Comparison

4.3.4 Spacial vs. Frequency Domain Detrend Comparison

Figure 25 shows the detrended terrain profile based on subtracting the trend from the frequency domain.
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Figure 25 — Spacial versus Frequency Domain Detrended Comparison

A zoomed version of the end is shown in Figure 26. Note the agreement in results.
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Figure 26 — Zoomed Detrended Comparison
4.3.5 Spacial vs. Frequency Domain Mean and Detrended Differences

Figure 27 shows the difference between the spacial and frequency domain for the mean and detrended
profile. Note they are the same except for round off error.
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Figure 27 — Spacial versus Frequency Domain Mean/Detrended Differences

4.3.6 Equivalent Measures

Results output from the script in Section 4.2.8 for this terrain profile show numerical comparisons between
the spacial domain RMS function, standard deviation of the detrended signal, square root of the variance
of the detrended signal, and each side of Parseval’s Theorem outlined in Section 3.3 to be equivalent.
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ans =

spacial/freq results

ans =

rms

ans =

std (mydet, 1)

ans =

sqgrt (var (mydet, 1))

ans =

sgrt ( sum(mydet.”2)/length (mydet))

ans =

sqrt ( sum( Pxx ) *length (mydet) /NFET)

ans =

3.1228 3.1228 3.1228 3.1228 3.1228

Again, it is demonstrated (with a completely different terrain profile) that the computation of the Root-
Mean-Square (RMS) Terrain Roughness Metric (Section 2.1) is valid in either the spacial or frequency
domain.

4.4 Test Case Calculations
An example test case is included in Appendix A.5 where corresponding script functions and output can be
compared for a simple signal
x = [13 -10 58 922 2 3 10 10 12 11 14 13 9 171"';
and filter

h=1[12382321]"';

to demonstrate how MATLAB functions (see Appendix A.2) perform.
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APPENDIX A.1 — RMS (Exponential Weighted Filter)

o

o

calculate RMS exp.weighted average value

o

oo

inputs:
X - array to filter

oe oo

o

A - sample spacing
lambda - exp weighting constant

oe°

oe°

%returns:

% fdet - detrended terrain
% rms - rms value

% fmean - trend

o

xmean - mean of fdet

o

function [fdet, rms, fmean,xmean]=rms (x,N,A, lambda)

of terrain

N - number of samples vector eg. [0 1 2 3 4 5]

function [fdet, rms, fmean, xmean]=rms (x,N,A, lambda) ;

o° oo

length (x) ;
length (N) ;

(n+l) - s;
1 = exp(-N*A/lambda) ;
sum(detl) *2;
fmean = x;
fdet = x;
for 1 = s:e,

e

Q00 n 3
ot

fmean(i) = sum(x(i:-1l:i-s+1).*detl + x(i:

end

fdet (s:e) = x(s:e) - fmean(s:e);
xmean = mean (fdet(s:e));

fdet (s:e) = fdet(s:e)- xmean;

% for best unbiased estimator use std(x,0)
rms = std(fdet(s:e),1);

fmean = fmean(s:e);
fdet = fdet(s:e);

can extend input by length of filter so do not lose data
x = [x(1l)*zeros(l,length(N)-1), x', x(end)*zeros(l,length (N

i+s-1) .*detl) /d;

to divide by N-1

=11

instead of N
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APPENDIX A.2 — MATLAB Function Definitions

dimread (http://www.mathworks.com/help/matlab/ref/dimread.html)
size (http://www.mathworks.com/help/matlab/ref/size.html)

nextpow?2 (http://www.mathworks.com/help/matlab/ref/nextpow2.html)
conv (http://www.mathworks.com/help/matlab/ref/conv.html)

fft (http://www.mathworks.com/help/matlab/ref/fft.html)

ifft (http://www.mathworks.com/help/matlab/ref/ifft.html)

The functions Y = fft (x) andy = ifft (X) implementthe transform and inverse

transform pair given for vectors of length N by:

N
N
s R e L p=10k-1)
Xik) =Y x(jloy
J=1
J‘"r P ’
x( )= (1/N)Y Xikjay =Y
k=1
where
fl'.'l‘l'r = EII 2w .I-'I 'l

is an Nth root of unity.

var (http://www.mathworks.com/help/matlab/ref/var.html)

std (http://www.mathworks.com/help/matlab/ref/std.html)

conj (http://www.mathworks.com/help/matlab/ref/conj.html)

exp (http://www.mathworks.com/help/matlab/ref/exp.html)

linspace (http://www.mathworks.com/help/matlab/ref/linspace.html)
psd (http://www.mathworks.com/help/signal/ref/spectrum.html)
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APPENDIX A.3 — Reference [15] - First 4 pages

Correlation and Convolution
Class Notes for CMSC 426, Fall 2005
David Jacobs

Introduction

Correlation and Convolution are basic operations that we will perform to extract
information from images. They are in some sense the simplest operations that we can
perform on an image, but they are extremely useful. Moreover, because they are simple,
thev can be analyzed and understood very well, and they are also easy to implement and
can be computed very efficiently. Our main goal is fo understand exactly what
correlation and convolution do, and why they are vseful. We will also touch on some of
their interesting theoretical properties; though developing a full understanding of them
would take more time than we have.

These operations have two key features: they are shifi-invarians, and they are linear.
Shift-invariant means that we perform the same operation at every point in the image.
Linear means that this operation is linear, that is, we replace everv pixel with a linear
combination of its neighbors. These two properties make these operations very simple;
it’s simpler if we do the same thing everywhere, and linear operations are always the
simplest ones.

We will first consider the easiest versions of these operations, and then generalize. We'll
make things easier in a couple of ways. First, convolution and correlation are almost
identical operations, but students seem to find convolution more confusing. So we will
begin by only speaking of correlation, and then later describe convolution. Second. we
will start out by discussing 1D images. We can think of a 1D image as just a single row
of pixels. Sometimes things become much more complicated in 2D than 1D, but Iuckily,
correlation and convolution do not change much with the dimension of the image, so
understanding things in 1D will help a lot. Also, later we will find that in some cases it is
enlightening fo think of an image as a continuous function, but we will begin by
considering an image as discrefe, meaning as composed of a collection of pixels.

Notation

We will use uppercase letters such as [ and J to denote an image. An image may be
either 2D (as it is in real life) or 1D. We will use lowercase letters, like 7 and j to denote
indices, or positions, in the image. When we index into an image, we will use the same
convenfions as Matlab. First, that means that the first element of an image is indicated by
1 (not 0. as in Java. say). Soif/isa 1D image, I1]) is its first element. Second. for 2D
images we give first the row, then the column. 5o If3,6) is the pixel in the third row of
the image, and the sixth column.

An Example
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One of the simplest operations that we can perform with correlation is local averaging.
Aswe will see, this is also an extremely useful operation. Let’s consider a simple
averaging operation, in which we replace every pixel in a 1D image by the average of
that pixel and its two neighbors. Suppose we have an image J equal fo:

5142374653 ]6]

Averaging 15 an operation that takes an image as inpuf. and produces a new image as
output. When we average the fourth pixel, for example, we replace the value 3 with the
average of 2. 3, and 7. That is, if we call the new image that we produce J we can write:
Ji4) = (I{3)+1{4)=1{5))/3 = (2+3+7)/3 = 4. Or, for example, we also get: Jf3) =
(I(2)+1¢3)=1{4))/3 = (4+2+3)/3 = 3. Notice that every pixel in the new image depends
on the pixels in the old image. A possible error is to use Ji3) when calculating Ji4).
Don’t do this; Jid) should only depend on fy3), Ij4) and I¥5). Averaging like this 15 shift-
invariant, because we perform the same operation at every pixel. Every new pixel is the
average of itself and its two neighbors. Averaging is linear because every new pixel is a
linear combination of the old pixels. This means that we scale the old pixels (in this
case, we mulfiply all the neighboring pixels by 1/3) and add them up. This example
illustrates another property of all correlation and convolution that we will consider. The
oufput image at a pixel is based on only a small neighborhood of pixels around it in the
input image. In this case the neighborhood contains only three pixels. Sometimes we
will use slightly larger neighborhoods, but generally they will not be too big.

Boundaries: We still haven’t fully described correlation, because we haven’t said what
to do at the boundaries of the image. What 1s Ji1)? There is no pixel on its left to include
in the average, ie., I[f0) is not defined. There are four common ways of dealing with this
1s5u€.

L [. [. JefJo[sfafa[3[7[4f6]5[3]6ofo]. [.] |
In the first method of handling boundaries, the original image is padded with zeros
(in red italics).

The first way is to imagine that [ is part of an infinitely long image which is zero
everyvwhere except where we have specified. In that case, we have If0) = 0, and we can
say: Ji1) = (If0) = If1) + I{2))/3 = {0 + 5 + 4)/3 = 3. Similarly, we have: J{I10) =
()= I10)+If11)3 =3+ 6 = 0)3 = 3.

L[ [. [s5]|5]s[4f2[3[7[4[6[5[3[6]6]6]. [.]. |
In the second method of handling boundaries, the original image is padded with the
first and last values (in red italics).

The second way is to also imagine that [ is part of an infinite image, but to extend if using
the first and last pixels in the image. In our example, any pixel to the left of the first pixel
in / would have the value 5, and any pixel to the right of the last pixel would have the
value 6. So we would say: JI)=(I(0) = If1) = 2)3=(+5+4)3=4 23, and
Ji10) = @Q)=K10)+If11))3 = (3 + 6 + 6)73 =3

39



- |- |. [3]/6[5(af2[3[7]4]6[5[3[6]5 (4] [. [

In the third method of handling boundaries, the original image is repeated cyclically
(in red italics).

Third. we can imagine the image as being like a circle, so that the pixel values repeat
over and over again. The pixel to the left of the first pixel then would be the last pixel
in the image. That is, in our example, we would define Iy} to be I{10). Then we would
have Ji1) = (If0) = I{1) + I{2))/3= (I(10) + {1} = I{2))/3 =6 + 5 + 4)/3 = 5, and J{10)
= (I0)+K10)+I(11))/3 = TO)+HIQ)+I1)/3 =3+ 6+ 5)/3 =423

Finally, we can simply say that the image is undefined bevond the values that we have
been given. In that case, we cannot compute any average that uses these undefined
values, so Ji1) and Ji10) will be undefined, and J will be smaller than .

These four methods have different advantages and disadvantages. If we imagine that the
image we are using is just a small window on the world, and we want to use values
outside the boundary that are most similar to the values that we would have obtained if
we'd taken a bigger picture, than the second approach probably makes the most sense.
That 15, if we had to guess at the value of [f0), even though we can’t see it, the value we
can see in J(1) is probably a pretty good guess. In this class, unless we explicitly state
otherwise, you should use the second method for handling boundaries.

Correlation as a Sliding, Windowed Operation

We're now going to look at the same averaging operation in a slightly different way
which is more graphical, and perhaps more intuitive to generalize. In averaging. for a
specific pixel we multiply it and its neighbors by 1/3 each, and then add up the three
resulting oumbers. The numbers we multiply, (1/3, 1/3, 1/3) form a fflfer. This particular
filter 1s called a box filter. We can think of it as a 1x3 structure that we slide along the
image. At each position, we multiply each number of the filter by the image number that
lies underneath it, and add these all up. The result is a new number corresponding to the
pixel that is underneath the center of the filter. The figure below shows us producing Jy1)
in this way.

S S = 0 5 5 O 5
* * *
13 [173 1-'3|
[
53 [53 4.-'3|
3
N I O O
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To produce the next number in the filtered image, we slide the filter over a pixel, and
perform the same operation.

L L Isfsedafsfrfafefsfsfefolaf [ [ |
%

#* *
13 |13 1.-'3|
|
513 [45 z-'3|
z
s qusy [ T 1 1 T [ [ |

We continue doing this until we have produced every pixel in J With this view of
correlation, we can define a new averaging procedure by just defining a new filter. For
example, suppose instead of averaging a pixel with its immediate neighbors, we want to
average each pixel with immediate neighbors and their immediate neighbors. We can
define a filter as (1/5, 1/5, 1/5, 1/5, 1/5). Then we perform the same operation as above,
but using a filter that is five pixels wide. The first pixel in the resulting image will then
be: J(1) = (I-1)/5 + If0O)5 + I(1)/5 + If2)5 + I3)/5) = 1+1+1+4/5 = 2/5 =4 /5.

A Mathematical Definition for Correlation

It’s helpful to write this all down more formally. Suppose F is a correlation filter. It will
be convenient notationally to suppose that F has an odd number of elements, so we can
suppose that as it shifts. its center is right on top of an element of I So we say that F has
2N+1 elements. and that these are indexed from -N to N, so that the center element of F is
F(0). Then we can write:

N
FoI(x)= Y F@I(x+1i)

i=—N
where the circle denotes correlation. With this notation, we can define a simple box filter
as:

/ o
FG)=/3 for i=-101
0 for i=-101

Constructing an Filter from a Continuous Function

It is pretty intuitive what a reasonable averaging filter should look like. Now we want to
start to consider more general strategies for constructing filters. It commonly occurs that
we have in mind a continuous fiunction that would make a good filter, and we want fo
come up with a discrete filter that approximates this continuous function. Some reasons
for thinking of filters first as confinuous functions will be given when we talk about the
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APPENDIX A.4 — Plot Demonstration Script

stl

close all

clear all

fig =1

y=dlmread ('MUNGL.FIL"'") ;

%y = dlmread('3courL.FIL'");

x = y(:,2)*12; % convert feet to inches

tmp = size (x);

lenx = tmp (1) ;

% e- (N*A/lambda)

N = [0:1:120]"'; % 1l-side = 30 ft = 360 in @ 3 in samples = 120 (360/3)
A = 3; % 3 in samples

lambda = 10*12; % 10 ft * 12 = 120 in

% -N*A/lambda = -120*3/120 = -3 @ last sample

% [fdet, rms, fmean, xmean] =rmswes (x,N, A, lambda) ;

[fdet, rms, fmean, xmean]=rmswes (x,N,3,10*12); % 3 inch samples to 30 ft
figure (fiqg)

clf

fig = fig+l

ttl = (0:lenx-1)'*(1/3);

plot(ttl,x,'r'");

hold on

plot (ttl(121:end-120), fmean, 'g");
plot(ttl(121:end-120), fdet, 'b");

title ('Munson Gravel');

Stitle('Perryman 3');

ylabel ('Elevation [in]"'");

xlabel ('Distance [in]"');
legend('original', 'mean', 'detrended', 'Location', 'NorthWest"') ;
axis([-50,15000,-200,18001)

print ('-dpng', 'tl-mun');
Sprint ('-dpng', 'tl-p3"');

figure (fig)

clf

fig = fig+l

ttl = (0:lenx-1)'*(1/3);
plot(ttl,x,'r");

hold on
plot(ttl(121:end-120), fmean, 'g'");
title ('Munson Gravel');
Stitle('Perryman 3');

ylabel ('Elevation [in]"'");

xlabel ('Distance [in]"');
legend('original', 'mean', 'Location', 'NorthWest"') ;
axis([1.444e4,1.455e4,1732,1737])
print ('-dpng', '"tl-zml"'");

figure (fiqg)

clf

fig = fig+l

ttl = (0:lenx-1)'*(1/3);

plot(ttl(121:end-120), fdet, 'b");

title ('Munson Gravel');

Stitle('Perryman 3');

ylabel ('Elevation [in]"'");

xlabel ('Distance [in]"');
legend('detrended', 'Location', 'NorthWest') ;
axis([1.42e4,1.47e4,-4,3])

print ('-dpng', 'tl-zm2"'");

o

t2.m

o

o°

create and plot filters

o

o

2-sided exponential
tmp = size (N);
lenN = tmp (1) ;
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)

fexp = zeros(lenN*2-1,1); % overlap at zero
fexp(l:1lenN) = exp(-N(length(N):-1:1)*A/lambda) ;

fexp (lenN:end) = exp (-N*A/lambda) ;

fexp (lenN) = 2; % double count zero position
fexp = fexp/sum(fexp);

tmp = size (fexp);

lenfexp = tmp(1l);

% rect

rect = ones(lenN*2-1,1);
rect = rect/sum(rect);
tmp = size(rect);
lenrect = tmp(1l);

figure (fiqg)
clf
fig = fig + 1

subplot(2,1,1),plot (fexp, 'r")

ylabel ('exp')

title('Spacial Windows - Normalized')
axis([-1,252,-0.01,0.03]);

xlabel ('Distance [in]'")
subplot(2,1,2),plot(rect, 'g")

ylabel ('rect');

xlabel ('Distance [in]')
axis([-1,252,-0.01,0.01]);

print ('-dpng', 't2-tw');

lenx

NFFT = 2”nextpow2 (lenx); % !!luse all with this so can mul in freq domain
lenfexp

lenrect

Ffexp = fft(fexp,NFFT)/NFFT; % !!!scale by len to get right mag (see sin test)
Frect = fft(rect,NFFT)/NFFT;

% Fs = 1/T

Fs=(1/3); % 4 samples in 12 in = 4/12 = 1/3

% linspace (x1,x2,N) = N pts between x1 and x2
f = Fs/2*linspace (0,1,NFFT/2+1); %

figure (fiqg)

clf

fig = fig + 1

subplot(2,1,1),plot (f,2*abs (Ffexp (1:NFFT/2+1)),'r"); % !!! 2*abs /NFFT/2+1
title ('Frequency Windows (FFT)"');

ylabel ('exp')

xlabel ('Frequency [Hz]"')

axis ([0,0.05,0,4e-5]);
subplot(2,1,2),plot (f,2*abs (Frect (1:NFFT/2+1)),'g");

ylabel ('rect')

xlabel ('Frequency [Hz]"')

axis ([0,0.05,0,4e-5]);

print ('-dpng', "t3-fft'");

o

t4.m

o

o

plot cos test FFT

oe°

oe°

MATLAB example

figure (fiqg)

clf

fig = fig + 1

Fsl = 1000 % F=1/T =1/le-3sec = 1/msec
L = 1000;

t= (0:1/Fs1:5000-1); % 5 sec @ Fs=1000
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y = 0.3*sin(2*pi*35*t)+0.7 *sin(2*pi*50*t) + sin(2*pi*120*t);
tNEFFT = 2”nextpow2 (L) ;

tY = fft(y,tNFFT) /tNFFT;

tf = Fsl/2*linspace(0,1,tNFFT/2+1); % one sided frequency

subplot (2,1,1),plot (1000*t(1:250),y(1:250))

title ('FFT Example - 0.3cos (35Hz)+0.7cos (50Hz)+1.0cos (120Hz) ") ;
ylabel ('Signal')

xlabel ('Time [msec]'):;
subplot(2,1,2),plot (tf,2*abs (tY (1:tNFFT/2+1)))

xlabel ('Frequency [Hz]'");

ylabel ('"FET (2*|Y(£)1])");

print ('-dpng', 't4-cos"');

ffexp = NFFT*ifft (Ffexp,NFFT); % !!! scale by length
frect = NFFT*ifft (Frect,NFFT);

figure (fig)

clf

fig = fig + 1

subplot (2,1,1),plot (fexp-ffexp(l:lenfexp),'r'); % lenfexp = lenN*2-1
title('Spacial/Frequency (FFT/iFFT) Window Differences');

ylabel ('exp');

subplot(2,1,2),plot (rect-frect(l:lenrect), 'b');

ylabel ('rect')

print ('-dpng', 't5-wd'");

% plot FFT x

Fx = fft(x,NFFT)/NFFT;
=(0:1lenx-1)*(1/3);
= Fs/2*linspace (0,1,NFFT/2+1);

% plot inverse FFT x

Fcx = Fx;
fFcx = NFFT*ifft (Fcx,NFFET) ;

figure (fig)
clf
fig = fig + 1

plot(tte6,x,'r'");

hold on

plot (tt6, fFex (l:1lenx),
ylabel ('Elevation [in]
xlabel ('Distance [in]'
title ('Munson Gravel')
Stitle('Perryman 3')

'g*'); $ !!!l NFFT -> true length
")

’

)

'size x,fFcx!'

size (x),size (fFcx)

plot (tt6,x-fFcx (l:1lenx), 'b");

legend('original', 'original (FFT/iFFT) "', 'error', 'Location', 'NorthWest") ;
print ('-dpng', 't6-ter');

figure (fig)
clf
fig = fig + 1

plot(tt6,x,'r");
hold on

plot (tt6, fFcx (1l:1lenx)
ylabel ('Elevation [1
xlabel ('Distance [in]
title ('Munson Gravel')
%title('Perryman 3')

’

,'g*'); $ !l NFFT -> true length
IR
")



'size x,fFcx"

size(x),size (fFcx)
legend('original', 'original (FFT/iFFT) ', 'Location', 'NorthWest") ;
axis([1.45e4,1.4535e4,1733,1736]1);

print ('-dpng', 't6-zm'");

oo

t7.m

o

oe°

plot exp filter

o

H = Ffexp;
%$H=conv (Ffexp, Frect) ;
tmp = size (H);

lenH = tmp (1) ;

o

o

plot inverse x, mean, mydet, detrended

o

Fcx = Fx.*H;

$Fcx = Fx.* (lenH*H) .*Frect;

fFex = NFFT*NEFT*ifft (Fcx,NFEFT); % !!! scale by time length
figure (fiqg)

clf

fig = fig + 1

plot (fmean, 'r'")

hold on

plot (abs (fFcx (lenfexp:lenx+ (lenfexp-1) - (lenfexp-1))),'g*"'); % !!! proper indexes for y cutoffs (y
only when exp fully in orig vy)

'size fmean, fFcx, lenx, lenfexp, lenN'

size (fmean),size (fFcx), lenx, lenfexp, lenN

title ('Munson Gravel - Mean');

ylabel ('Elevation [in]"'");

xlabel ('Distance [in]"');

legend ('spacial filter', 'frequency filter (FFT/.*H/iFFT)"', 'Location', 'NorthWest"');
print ('-dpng', 't7-mean');

figure (fiqg)
clf
fig = fig + 1

plot (fmean, 'r'")

hold on

plot (abs (fFcx (lenfexp:lenx+ (lenfexp-1) - (lenfexp-1))),'g*"'); % !!! proper indexes for y cutoffs (y
only when exp fully in orig vy)

'size fmean, fFcx, lenx, lenfexp, lenN'

size (fmean),size (fFcx), lenx, lenfexp, lenN

title ('Munson Gravel - Mean');

Stitle(‘Perryman 3 - Mean’);

ylabel ('Elevation [in]"'");

legend ('spacial filter', 'frequency filter (FFT/.*H/iFFT)"', 'Location', 'NorthWest"');
axis([4.333e4,4.3345e4,1735.25, 1735.45]);

print ('-dpng', 't7-zm'");

oo

t8.m

o

oe°

plot detrended

assumes lenexp is odd, take out mean from FFT/.*H/iFFT

mydet = x( (lenfexp+1l)/2 : lenx - (lenfexp+l)/2 + 1 ) - abs( fFcx( lenfexp : lenx + (lenfexp-1) -
(lenfexp-1) ) );

mm=mean (mydet)

mydet = mydet - mm;

oe°

figure (fiqg)
clf
fig = fig + 1

plot (fdet, 'r');

hold on
plot ( mydet, 'g*'")
title ('Munson Gravel - Detrended');

ylabel ('Elevation [in]');
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xlabel ('Distance [in]"'");
legend('original - spacial filter', 'original - frequency
filter (FFT/.*H/1iFFT) ', 'Location', "NorthWest') ;

L}

print ('-dpng', 't8-det"');
figure (fig)
clf

fig = fig + 1

plot (fdet, 'r");

hold on

plot ( mydet, 'g*'")

title ('Munson Gravel - Detrended');
ylabel ('Elevation [in]"'");

(
xlabel ('Distance [in]');
legend('original - spacial filter', 'original - frequency
filter (FFT/.*H/iFFT) "', 'Location', "NorthWest') ;
axis([4.331e4,4.337e4,-0.4,0.81);
print ('-dpng', 't8-zm');

t9.m

oo

o

o

plot mean error

o

figure (fiqg)

clf

fig = fig + 1

subplot(2,1,1),plot (fmean - abs (fFcx(lenfexp:lenx+ (lenfexp-1)-(lenfexp-1))),'r'); % !!! proper
indexes for y cutoffs (y only when exp fully in orig y)

title('Munson Gravel Spacial/Frequency Filter Differences')

ylabel ('Mean');

o

% plot detrended error

subplot (2,1,2),plot (fdet-mydet, 'r");

$title ('Spacial/Frequency (iFFT) Munson Gravel Differences')
ylabel ('Detrended') ;

print ('-dpng', 'p9-diff');

$t10.m

% PSD

% std(x,1) = sqgrt(sum(x.”2)/length (x))
tmp = size (mydet);

lenmydet = tmp (1)

Fmydet = fft (mydet,NFFT) /NFFT;
Pxx = Fmydet.*conj (Fmydet) ;

'rm t10-d

diary t10-d

'spacial/freq restuls'

'rms’

'std (mydet, 1)

'sqrt (var (mydet,1))"'

'sqrt ( sum(mydet.”2)/length (mydet))"'
'sqrt ( sum( Pxx )*length (mydet) /NFFT)"'

rms, std (mydet, 1), sqrt (var (mydet, 1)), sqrt ( sum(mydet.”2)/length (mydet)),sqrt( sum( Pxx
*NFFT/length (mydet)) ]
'Fs/2', sqgrt( sum(2*Pxx)*Fs )

o0~ —

SEXAMPLE: Spectral analysis of a complex signal plus noise.

% Fs = 1000; t = 0:1/Fs:.296;

% x = exp (li*2*pi*200*t)+randn(size(t));

% h = spectrum.periodogram; % Create a periodogram spectral estimator.
% psd(h,x,'Fs',Fs); % Calculates and plots the two-sided PSD.

o

EXAMPLE: Spectral analysis of a signal that contains a 200Hz cosine



o o0 o oo

o

% plus noise.

Fs = 1000; t = 0:1/Fs:.296;

X = cos(2*pi*t*200)+randn(size(t));
h = spectrum.welch;
psd(h,x,'Fs',Fs);

o

oe

C
C

reate a Welch spectral estimator.
alculate and plot the PSD.
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APPENDIX A.5 — Test Case Input/Output Example

o
pax
=
=

o
o

clear all
diary tll-d

%%%%%! ! ' INEED TO HAVE ZERO MEAN or changes things for RMS
x = [13-1058 9222 3 10 10 12 11 14 13 9 171';
X = x-mean (x);

size (x);

xl = [13 -10 58 922 2 3 10 10 12 11 14 13 9 171"';
x1 = [x1;1;0;-1;20;301;
x1 = x1 -mean (x1);

tmp = size(x1l);
lenxl = tmp(l);

[1238321]"';
tmp = size (h);

lenh = tmp (1) ;
'nextpow2'

lenx

nextpow?2 (lenx)

NEFFT = 2”nextpow?2 (lenx)

%%%convolution
xh=conv (x,h, "full");

Fx = fft(x,NFFT)/NFFT;

Fh = fft (h,NFFT) /NFFT;
Fxh = Fx.*Fh;

iFxh = NFFT*NFFT*ifft (Fxh,NFFT) ;
iFxh = iFxh(l:lenx+lenh-1);
iFx = NFFT*ifft (Fx,NFFT);
iFh = NFFT*ifft (Fh,NFFT) ;
IX’hl

x,h

size(x),size (h)

'Xh'

xh, iFxh

'size xh,iFxh'

size (xh),size (1iFxh)

'fft (x,NFFT) /lenx'

Fx

'ifft (Fx,NFFT) *lenx'

iFx

'conj (Fx)'

conij (Fx)

'var (x) ,var(x,1)"'

var (x) ,var(x,1)
'std(x),std(x,1)"'

std(x), std(x,1)

'exp (-x)'

exp (-x)

'linspace (0,1,NFFT/2+1)"
NFFET

NFFT/2+1
linspace(0,1,NFFT/2+1)
lpsdl

Fs = 1/3; %T=3

hl=psd(spectrum.welch,0.5*sin (2*pi*Fs*[0:3:1000]),'Fs',Fs)

fprintf ('$f %e\n', [hl.frequencies';hl.data']);
L}

Fx1l = fft(x1,NFFT)/NFFT;
'var x,x1'

al=var(x,1)

bl=var(x1l,1)

Fs = 1/3;

%%!11! divid by NFFT (assumes zero mean, else need add mean/Pxx (0)

etc.)
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Pxx =
Pxl =

[sum (x

Fx.*conj (Fx) ;
Fx1l.*conj (Fx1);
'sum x."2 Pxx*NFFT; al sum Pxx*NFFT/lenx'

.N2)

sum (Pxx) *NFFT]

[al sum(Pxx)*NFFT/lenx]
divid by NFFT (assumes zero mean, else need add mean/Pxx(0)

oo
EE AN

- o0

sum Px Pxl /NFFT'
1=sum (Pxx) *NFFT/length (x)
1

c

dl=sum(Px1) *NFFT/length (x1)

rl = ( al*length(x) ) / ( cl*length(x) );

r2 = ( bl*length(x1l) )/ ( dl*length(xl) );

'al*len, cl*len”2 ratio, rep bl,dl’

fprintf ('$f $f $f\n', [al*length(x),cl*length(x)],rl);
fprintf ('$f $f %f\n', [bl*length(x1),dl*length(x1)],r2);
'sqrt(al), sqgrt(cl/length(x))"

sgrt(al),sqrt(cl)

'std(x,1)"'

std(x,1) % sqgrt(al*length(x))/sqrt(length(x))

'sqrt (var (x, 1) *length(x)), std(x,1l)*sqgrt(length(x))"’
sgrt(var(x,1)*length(x)),std(x,1) *sqgrt (length (x))
al*length(x),std(x,1)"2* (length(x))

diary

o°

o

—==t1
ans =

nextpo

lenx =

17

ans =

NFFT =

32

ans =

=-7.
-5.
-18.
-3.
-0.

13.
-6.
-5.

0O N W

1-d

w2

1765
1765
1765
1765
1765

.8235

8235
1765
1765

.8235
.8235
.8235
.8235
.8235
.8235
.8235
.8235

etc.)

49



PN WowwN

ans =

17

ans =

ans =

xh

xh

-7.1765
-19.5294
-50.0588

-112.4706
-124.0000
-184.3529
-82.5294
-28.5294
5.4706

82.4706
-16.5294
-18.5294

16.4706

26.4706

59.4706

67.4706

89.4706

85.6471

62.0000

88.5294

32.9412

18.4706

8.8235

iFxh =

-7.1765
-19.5294
-50.0588

-112.4706
-124.0000
-184.3529
-82.5294
-28.5294
5.4706

82.4706
-16.5294
-18.5294

16.4706

26.4706

59.4706

67.4706

89.4706

85.6471
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62.0000
88.5294
32.9412
18.4706

8.8235

ans =

size xh,iFxh

ans =
23 1
ans =
23 1
ans =

fft (x,NFFT)/lenx

Fx =
0.0000
-1.6054 - 0.19551
-0.4515 + 0.85071
-0.9254 + 0.20541
-0.5466 + 1.18211
0.1333 + 1.10791
0.9118 + 0.41001
0.2412 - 0.30041
-0.0993 - 0.25001
-0.3327 + 0.49031
0.7963 + 0.11141
0.2423 - 0.47791
0.1605 - 1.00541
-1.1850 - 0.49941
-0.4037 + 0.17711
-0.5682 + 0.18201
0.0882
-0.5682 - 0.18201
-0.4037 - 0.17711
-1.1850 + 0.49941
0.1605 + 1.00541
0.2423 + 0.47791
0.7963 - 0.11141
-0.3327 - 0.49031
-0.0993 + 0.25001
0.2412 + 0.30041
0.9118 - 0.41001
0.1333 - 1.10791
-0.5466 - 1.18211
-0.9254 - 0.20541
-0.4515 - 0.85071
-1.6054 + 0.19551
ans =

ifft (Fx, NFFT) *lenx

iFx =

-7.1765
-5.1765
-18.1765
-3.1765



|
o

.1765
.8235
.8235
.1765
.1765
.8235
.8235
.8235
.8235
.8235
.8235
.8235
.8235
.0000

[
= oo wo

O 00O TN W

0.0000
0.0000

-0.0000
0.0000

-0.0000
-0.0000

0.0000
-0.0000

-0.0000
0.0000

ans =

conj (Fx)

ans =

0.0000

-1.6054 +

-0.4515
-0.9254
-0.5466
0.1333
0.9118
0.2412
-0.0993
-0.3327
0.7963
0.2423
0.1605
-1.1850
-0.4037
-0.5682
0.0882
-0.5682
-0.4037
-1.1850
0.1605
0.2423
0.7963
-0.3327
-0.0993
0.2412
0.9118
0.1333
-0.5466
-0.9254
-0.4515
-1.6054

ans =

+ +

| + o+

+ +

O OO P OODOOOOr OO Oo

I+ + 1

I+ o+ o+

OO OPFrPROOODOCOoOOoOHHEFrOOoOOo

.19551
.85071
.20541
.18211
.10791
.41001
.30041
.25001
.49031
.11144
.47791
.00541
.49941
17714
.18201

.18201
17714
.49941
.00541
.47791
.11144
.49031
.25001
.30041
.41001
.10791
.18211
.20541
.85071
.19551

var (x),var (x,1)
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ans =

52.5294

ans =

49.4394

ans =

std(x),std(x,1)

ans =

7.2477

ans =

7.0313

ans =

exp (-x)

ans =
1.0e+07 *

.0001
.0000
.8332
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

leNoNoNoNoNoNoloNololoNolNeNolNNeo o)

ans =

linspace (0,1,NFFT/2+1)

NFFT =

ans =

17

ans =

Columns 1 through 12
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0 0.0625 0.1250 0.1875 0.2500
0.5625 0.6250 0.6875
Columns 13 through 17
0.7500 0.8125 0.8750 0.9375 1.0000
ans =
psd
hl =
Name: 'Power Spectral Density'
Data: [129x1 double]
SpectrumType: 'Onesided'
NormalizedFrequency: false
Fs: 0.3333
Frequencies: [129x1 double]
Conflevel: 'Not Specified’
ConfInterval: []
0.000000 5.226231e-25
0.001302 9.483823e-25
0.002604 7.050443e-25
0.003906 4.228587e-25
0.005208 1.984093e-25
0.006510 6.876082e-26
0.007812 1.569868e-26
0.009115 1.860584e-27
0.010417 2.391157e-28
0.011719 2.802668e-28
0.013021 2.285926e-28
0.014323 2.048480e-28
0.015625 2.346595e-28
0.016927 3.117960e-28
0.018229 3.945803e-28
0.019531 4.274355e-28
0.020833 4.732021e-28
0.022135 7.948712e-28
0.023438 2.104163e-27
0.024740 5.810612e-27
0.026042 1.334442e-26
0.027344 2.441229e-26
0.028646 3.586796e-26
0.029948 4.296287e-26
0.031250 4.240851e-26
0.032552 3.464528e-26
0.033854 2.338243e-26
0.035156 1.299076e-26
0.036458 6.011988e-27
0.037760 2.513154e-27
0.039062 1.176740e-27
0.040365 7.297665e-28
0.041667 5.569431e-28
0.042969 4.908393e-28
0.044271 4.682606e-28
0.045573 4.532329e-28
0.046875 4.708755e-28
0.048177 5.515843e-28
0.049479 6.726700e-28
0.050781 8.231078e-28
0.052083 1.109477e-27
0.053385 1.771123e-27
0.054688 3.105492e-27
0.055990 5.335277e-27
0.057292 8.395125e-27
0.058594 1.172202e-26
0.059896 1.430514e-26
0.061198 1.513542e-26
0.062500 1.380611le-26
0.063802 1.079887e-26

0.3125

0.3750

0.4375

0.5000
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.065104
.066406
.067708
.069010
.070312
.071615
.072917
.074219
.075521
.076823
.078125
.079427
.080729
.082031
.083333
.084635
.085938
.087240
.088542
.089844
.091146
.092448
.093750
.095052
.096354
.097656
.098958
.100260
.101562
.102865
.104167
.105469
.106771
.108073
.109375
.110677
.111979
.113281
.114583
.115885
.117188
.118490
.119792
.121094
.122396
.123698
.125000
.126302
.127604
.128906
.130208
.131510
.132812
.134115
.135417
.136719
.138021
.139323
.140625
.141927
.143229
.144531
.145833
.147135
.148438
.149740
.151042
.152344
.153646
.154948
.156250
.157552
.158854
.160156

B IR P NNNWOWWNNMERER I WONEFEFRPRPEPEPNNMNNNNNNORPNOWSOEDWRRJIWOWONNNMERPREPEPNDMNDNOWOORRNDSOOOOOOSWONREPOOUU DS WWWWDOJFNS

.214590e-27
.147154e-27
.151817e-27
.147077e-27
.240367e-28
.296537e-28
.161614e-28
.547719%e-28
.287241e-28
.259712e-28
.576679e-28
.289426e-28
.180134e-28
.253769%e-28
.344877e-28
.289231e-27
.090314e-27
.191044e-27
.360914e-27
.248827e-27
.538457e-27
.117029e-27
.136936e-27
.923833e-27
.809939%e-27
.004219e-27
.478430e-28
.493497e-28
.738669e-28
.308483e-28
.966835e-28
.747796e-28
.634736e-28
.669708e-28
.043268e-28
.827591e-28
.816106e-28
.964963e-28
.017416e-28
.141482e-27
.926689%e-27
.011499e-27
.149922e-27
.983957e-27
.222663e-27
.794617e-27
.867756e-27
.739608e-27
.696213e-27
.218688e-28
.691263e-28
.750187e-28
.210799%e-28
.098549e-28
.009576e-28
.903970e-28
.822989%e-28
.894325e-28
.360866e-28
.378028e-28
.905343e-28
.012244e-28
.019448e-27
.505093e-27
.142128e-27
.785748e-27
.212215e-27
.249653e-27
.890991e-27
.293755e-27
.664718e-27
.135004e-27
.330027e-28
.449490e-28
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0.161458 2.637662e-28
0.162760 1.785309e-28
0.164062 1.551579e-28
0.165365 1.539291e-28
0.166667 7.735081e-29
ans =
ans =
var x,x1
al =

49.4394
bl =

75.2417
ans =

sum x."2 Pxx*NFFT; al sum Pxx*NFFT/lenx

ans =

840.4706 840.4706

49.4394 49.4394

ans =

sum Px Pxl /NFFT

49.4394

75.2417

ans =
al*len, cl*len”2 ratio, rep bl,dl

840.470588 840.470588 1.000000
1655.318182 1655.318182 1.000000

ans =

sqgrt (al), sqgrt(cl/length (x))

ans =

7.0313

ans =



7.0313

ans =

std(x,1)

ans =

7.0313

ans =

sgrt (var (x,1)*length(x)),

ans =

28.9909

ans =

28.9909

ans =

840.4706

ans =

840.4706

std(x,1) *sqgrt (length(x))

57



